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Short range N-body simulation

Molecular dynamics (MD)

computer simulation of a system of particles;
N-body problem (cut-off distance):

forces are neglected if dist(part1, part2) > rc .

Motivation
simulate hundreds of millions of particles;
verify simulation results with real experiments (physicist).

Goals
use multiple accelerators on a single node;
integrate the simulation to ExaStamp (CEA):

a parallel framework for MD on heterogeneous clusters.
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Overview of the simulation

Figure : Overview of the interactive simulation (OpenGL + OpenCL app)
with around 2 million particles
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OpenCL programming model

What is OpenCL ?
a standard for parallel programming of heterogeneous systems;
initially influenced by GPU execution models;
but now available on different architectures, including CPUs.

OpenCL portability
the performance portability is not always guaranteed;
because there are different HW designs (GPUs, CPUs, etc).

Do you need to have different optimizations for different devices ?
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OpenCL programming model

Key terms
Device - GPU, CPU, etc.;
Work-item - Thread;
Work-group - Group of work-items;
Memory spaces:

Private - Work-item memory;
Local - Memory shared by work-items in a work-group;
Global - Memory shared by all work-items;
Constant - Read-only global memory.

OpenCL Runtime
Device creation;
Buffer management;
Kernel dispatch.
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OpenCL programming model

ScalVec kernel example
vector vec is located in global memory;
one work-item per vector element is used.

Figure : ScalVec kernel
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NVIDIA GPU execution model

Streaming processor (SP)

interleaved execution of
sequential hardware threads;
context switch is free (avoid
stalling on memory load).

Streaming multiprocessor (SM)

hosts groups of hardware
threads;
local memory sharing and
synchronization. Figure : Cluster of SIMD units

Global memory is shared by all streaming multiprocessors
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NVIDIA GPU execution model

Streaming multiprocessor
several OpenCL work-groups
can reside on the same SM;
limited by hardware
resources:

registers;
local memory;
max HW threads per SP.

Shared local memory
much faster than global
memory (shared by all SMs);
only a few kBytes! Figure : Streaming Multiprocessor
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Intel Xeon Phi execution model

Xeon Phi & OpenCL

61 cores, 244 threads (4x threads interleaved);
driver creates 240 SW threads which are pinned on each core:

threads scheduling in software (overhead).

each work-group is executed sequentially by one thread.

Implicit vectorization
kernels are implicitly vectorized along dimension 0;
vector size of 16 elements.
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OpenCL best practices

NVIDIA GPU
use tiling in local shared memory (much faster);
memory accesses must be coalesced whenever possible;
avoid different execution paths inside the same WG.

Intel Xeon Phi
do not use local memory and avoid barriers:

no physical scratchpad local memory;
no special HW support, so barriers are emulated by OpenCL.

code divergence may prevent successful vectorization;
limit the number of kernels (software scheduling overhead).
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Multi accelerators strategy

Initial version
single accelerator version for NVIDIA GPUs;

developed by Raymond Namyst.

Objectives
use multiple accelerators on a single node;
distribute the work among accelerators;
transfer particles between accelerators whenever it’s needed:

to maintain physical properties (cf. cut-off distance).

overlap memory accesses and optimize OpenCL code.
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Distribute the work

How to split the 3D space ?
spatial decomposition at the initialization;
global domain splitted in Z plans of size rc (cut-off distance).
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Figure : 2D overview of the spatial decomposition with 3 sub-domains
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Transfer of particles

Borders management
duplicate borders to maintain physical properties;
a border is a Z plan with "ghost particles";
"ghost particles" belong to a close sub-domain.
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Figure : Exploded view of borders duplication with "ghosts particles"
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Transfer of particles

Particles out-of-domain
particles move during the simulation;
a particle can move from a sub-domain to another one;
need to transfer these particles after each iteration.
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Figure : At the next step, the red particle will belong to the node 1, and
the blue particle will belong to the node 0
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Overlap memory accesses

Overlap memory accesses with HW computation
parallel decomposition of the problem:

left and right borders are processed before the center;
allows to transfer borders while the center is processing.
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Figure : Parallel decomposition : left and right borders are processed
before the center to allow to transfer borders
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Parallelization strategy

Important points
the most costly kernel;
one thread per particle;
27 cells to compute forces
with neighbors:

particles sorted at each
iteration;
coalesced accesses along
X axis.

two implementations (GPU
& CPU/MIC):

for performance & code
readability.
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Figure : Computation of forces with
neighbors (27 cells)
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Summary

Limitations
global domain needs to be homogeneous (static distribution);
the slowest compute node slows down all others.

Discussion : load balancing
idea: use a supervised learning based on execution times;
profile performance of compute nodes;
transfer Z plans between accelerators.
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Single accelerator
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Figure : Time in microseconds for one iteration with one million particles
in simple and double precision
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Multi accelerators
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Figure : Throughput according to the number of GPUs (3xTesla M2075),
in simple precision with around one million particles on each GPU
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Conclusion

Current status
more than 90M particles on accelerators with 5GB RAM;
single precision performance results:

61 Mparticles/i/s with 3xNVIDIA Tesla M2075 (gain: 2.9).

works quite well with NVIDIA GPUs and Intel Xeon Phi.

Much potential (and ideas) for improvement

load balancing between accelerators;
some optimizations are still applicable on Xeon Phi;
OpenCL kernels differ from one architecture to another:

OpenCL 2.0 could be a good start!
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Questions & Discussions

Questions & Discussions
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