
Introduction Background Contributions Evaluation Conclusion

An OpenCL simulation of molecular dynamics on
heterogeneous architectures

Master’s thesis

Samuel Pitoiset

Internship supervisor : Raymond NAMYST

LaBRI/INRIA - RUNTIME team

October 9, 2014

1 / 28



Introduction Background Contributions Evaluation Conclusion

Summary

1 Introduction
Short range N-body simulation
Overview of the simulation

2 Background

3 Contributions

4 Evaluation

5 Conclusion

2 / 28



Introduction Background Contributions Evaluation Conclusion

Short range N-body simulation

Molecular dynamics (MD)

computer simulation of a system of particles;
N-body problem (cut-off distance):

forces are neglected if dist(part1, part2) > rc .

Motivation
simulate hundreds of millions of particles;
verify simulation results with real experiments (physicist).

Goals
use multiple accelerators on a single node;
integrate the simulation to ExaStamp (CEA):

a parallel framework for MD on heterogeneous clusters.

3 / 28



Introduction Background Contributions Evaluation Conclusion

Overview of the simulation

Figure : Overview of the interactive simulation (OpenGL + OpenCL app)
with around 2 million particles

4 / 28



Introduction Background Contributions Evaluation Conclusion

Summary

1 Introduction

2 Background
OpenCL programming model
NVIDIA GPU execution model
Intel Xeon Phi execution model
OpenCL best practices

3 Contributions

4 Evaluation

5 Conclusion

5 / 28



Introduction Background Contributions Evaluation Conclusion

OpenCL programming model

What is OpenCL ?
a standard for parallel programming of heterogeneous systems;
initially influenced by GPU execution models;
but now available on different architectures, including CPUs.

OpenCL portability
the performance portability is not always guaranteed;
because there are different HW designs (GPUs, CPUs, etc).

Do you need to have different optimizations for different devices ?

6 / 28



Introduction Background Contributions Evaluation Conclusion

OpenCL programming model

Key terms
Device - GPU, CPU, etc.;
Work-item - Thread;
Work-group - Group of work-items;
Memory spaces:

Private - Work-item memory;
Local - Memory shared by work-items in a work-group;
Global - Memory shared by all work-items;
Constant - Read-only global memory.

OpenCL Runtime
Device creation;
Buffer management;
Kernel dispatch.

7 / 28



Introduction Background Contributions Evaluation Conclusion

OpenCL programming model

ScalVec kernel example
vector vec is located in global memory;
one work-item per vector element is used.

Figure : ScalVec kernel

8 / 28



Introduction Background Contributions Evaluation Conclusion

NVIDIA GPU execution model

Streaming processor (SP)

interleaved execution of
sequential hardware threads;
context switch is free (avoid
stalling on memory load).

Streaming multiprocessor (SM)

hosts groups of hardware
threads;
local memory sharing and
synchronization. Figure : Cluster of SIMD units

Global memory is shared by all streaming multiprocessors
9 / 28



Introduction Background Contributions Evaluation Conclusion

NVIDIA GPU execution model

Streaming multiprocessor
several OpenCL work-groups
can reside on the same SM;
limited by hardware
resources:

registers;
local memory;
max HW threads per SP.

Shared local memory
much faster than global
memory (shared by all SMs);
only a few kBytes! Figure : Streaming Multiprocessor

10 / 28



Introduction Background Contributions Evaluation Conclusion

Intel Xeon Phi execution model

Xeon Phi & OpenCL

61 cores, 244 threads (4x threads interleaved);
driver creates 240 SW threads which are pinned on each core:

threads scheduling in software (overhead).

each work-group is executed sequentially by one thread.

Implicit vectorization
kernels are implicitly vectorized along dimension 0;
vector size of 16 elements.

11 / 28



Introduction Background Contributions Evaluation Conclusion

OpenCL best practices

NVIDIA GPU
use tiling in local shared memory (much faster);
memory accesses must be coalesced whenever possible;
avoid different execution paths inside the same WG.

Intel Xeon Phi
do not use local memory and avoid barriers:

no physical scratchpad local memory;
no special HW support, so barriers are emulated by OpenCL.

code divergence may prevent successful vectorization;
limit the number of kernels (software scheduling overhead).

12 / 28



Introduction Background Contributions Evaluation Conclusion

Summary

1 Introduction

2 Background

3 Contributions
Multi accelerators strategy
Distribute the work
Transfer of particles
Overlap memory accesses
Parallelization strategy

4 Evaluation

5 Conclusion
13 / 28



Introduction Background Contributions Evaluation Conclusion

Multi accelerators strategy

Initial version
single accelerator version for NVIDIA GPUs;

developed by Raymond Namyst.

Objectives
use multiple accelerators on a single node;
distribute the work among accelerators;
transfer particles between accelerators whenever it’s needed:

to maintain physical properties (cf. cut-off distance).

overlap memory accesses and optimize OpenCL code.

14 / 28



Introduction Background Contributions Evaluation Conclusion

Distribute the work

How to split the 3D space ?
spatial decomposition at the initialization;
global domain splitted in Z plans of size rc (cut-off distance).

Z

X

Node 0 Node 2

Z plan (size

Node 1

v⃗

rc )

rc

particlesglobal domain

Figure : 2D overview of the spatial decomposition with 3 sub-domains

15 / 28



Introduction Background Contributions Evaluation Conclusion

Transfer of particles

Borders management
duplicate borders to maintain physical properties;
a border is a Z plan with "ghost particles";
"ghost particles" belong to a close sub-domain.

Z

X

Node 0 Node 1

v⃗

ghost particlesborders of node 0

borders of node 1

Figure : Exploded view of borders duplication with "ghosts particles"
16 / 28



Introduction Background Contributions Evaluation Conclusion

Transfer of particles

Particles out-of-domain
particles move during the simulation;
a particle can move from a sub-domain to another one;
need to transfer these particles after each iteration.

Z

X

Node 0 Node 1

v⃗

Figure : At the next step, the red particle will belong to the node 1, and
the blue particle will belong to the node 0

17 / 28



Introduction Background Contributions Evaluation Conclusion

Overlap memory accesses

Overlap memory accesses with HW computation
parallel decomposition of the problem:

left and right borders are processed before the center;
allows to transfer borders while the center is processing.

Z

X

Node

v⃗

left center right

Figure : Parallel decomposition : left and right borders are processed
before the center to allow to transfer borders

18 / 28



Introduction Background Contributions Evaluation Conclusion

Parallelization strategy

Important points
the most costly kernel;
one thread per particle;
27 cells to compute forces
with neighbors:

particles sorted at each
iteration;
coalesced accesses along
X axis.

two implementations (GPU
& CPU/MIC):

for performance & code
readability.

Z

X

Y

rc

Figure : Computation of forces with
neighbors (27 cells)

19 / 28



Introduction Background Contributions Evaluation Conclusion

Summary

Limitations
global domain needs to be homogeneous (static distribution);
the slowest compute node slows down all others.

Discussion : load balancing
idea: use a supervised learning based on execution times;
profile performance of compute nodes;
transfer Z plans between accelerators.

20 / 28



Introduction Background Contributions Evaluation Conclusion

Summary

1 Introduction

2 Background

3 Contributions

4 Evaluation
Single accelerator
Multi accelerators

5 Conclusion

21 / 28



Introduction Background Contributions Evaluation Conclusion

Single accelerator

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

M
2075

- sim
ple

K20c- sim
ple

Xeon- sim
ple

Phi- sim
ple

M
2075

- double

K20c- double

Xeon- double

Phi- double

T
im

e
 i
n
 m

ic
ro

se
co

n
d

s

box reset
box count
box scan
box copy
box sort
force
update pos
overhead

Figure : Time in microseconds for one iteration with one million particles
in simple and double precision

22 / 28



Introduction Background Contributions Evaluation Conclusion

Multi accelerators

 20

 30

 40

 50

 60

 70

1 2 3

T
h
ro

u
g
h
p
u
t 

(#
M

p
a
rt

ic
le

s/
i/
s)

Number of GPUs

1:1 scaling

Figure : Throughput according to the number of GPUs (3xTesla M2075),
in simple precision with around one million particles on each GPU

23 / 28



Introduction Background Contributions Evaluation Conclusion

Summary

1 Introduction

2 Background

3 Contributions

4 Evaluation

5 Conclusion
Questions & Discussions

24 / 28



Introduction Background Contributions Evaluation Conclusion

Conclusion

Current status
more than 90M particles on accelerators with 5GB RAM;
single precision performance results:

61 Mparticles/i/s with 3xNVIDIA Tesla M2075 (gain: 2.9).

works quite well with NVIDIA GPUs and Intel Xeon Phi.

Much potential (and ideas) for improvement

load balancing between accelerators;
some optimizations are still applicable on Xeon Phi;
OpenCL kernels differ from one architecture to another:

OpenCL 2.0 could be a good start!

25 / 28



Introduction Background Contributions Evaluation Conclusion

Questions & Discussions

Questions & Discussions

26 / 28


	Introduction
	Short range N-body simulation
	Overview of the simulation

	Background
	OpenCL programming model
	NVIDIA GPU execution model
	Intel Xeon Phi execution model
	OpenCL best practices

	Contributions
	Multi accelerators strategy
	Distribute the work
	Transfer of particles
	Overlap memory accesses
	Parallelization strategy

	Evaluation
	Single accelerator
	Multi accelerators

	Conclusion
	Questions & Discussions


