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PROBLEM

 Shaders are compiled in draw calls

‒Emulating certain features in shaders

 Drivers keep shaders in some intermediate representation

 And insert additional code based on the states

 While compiling, everything stops

 Number of state combinations is exponential
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EMULATED STATES

 Fragment shader:

‒Conversion to colorbuffer formats (RGBA32, RGBA FP16, …)

‒Alpha-test

‒Selecting between front and back colors

‒gl_FragColor

‒GL_ALPHA_TO_ONE

‒Polygon stippling

‒Line & polygon smoothing

‒Point smoothing

‒Fragment color clamping
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EMULATED STATES, CONT.

 Vertex shader:

‒Loading inputs from vertex buffers manually

‒Vertex color clamping
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IDEA

 Observation:

‒All states can be applied at the beginning or end of shaders

‒At link time, compile application shaders

‒At draw time, append any shader bytecode needed

 3 shader sections:

‒Prolog section

‒Main section (application shader)

‒Epilog section

 Concatenate them
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FRAGMENT SHADER EPILOG

Color outputs are expected in r0, r1, …

out0 = r0;

out1 = r1;
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FRAGMENT SHADER EPILOG

If we need alpha-test:

if (!alphafunc(r0.w, alpharef)) discard;

out0 = r0;

out1 = r1;
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FRAGMENT SHADER EPILOG

If we need color clamping:

r0 = clamp(r0, 0, 1);

r1 = clamp(r1, 0, 1);

if (!alphafunc(r0.w, alpharef)) discard;

out0 = r0;

out1 = r1;
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FRAGMENT SHADER EPILOG

If we need polygon stippling:

r0 = clamp(r0, 0, 1);

r1 = clamp(r1, 0, 1);

if (!alphafunc(r0.w, alpharef)) discard;

if (texture2D(stipple, gl_FragCoord.xy / 32).x < 0.5) discard;

out0 = r0;

out1 = r1;



10 | SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 201510 |   SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 2015

FRAGMENT SHADER EPILOG

If we need smoothing:

r0 = clamp(r0, 0, 1);

r1 = clamp(r1, 0, 1);

if (!alphafunc(r0.w, alpharef)) discard;

if (texture2D(stipple, gl_FragCoord.xy / 32).x < 0.5) discard;

r0.w *= coverageMask; // popcount(gl_SampleMaskIn) / gl_NumSamples

r1.w *= coverageMask;

out0 = r0;

out1 = r1;
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FRAGMENT SHADER EPILOG

If color conversion is required:

r0 = clamp(r0, 0, 1);

r1 = clamp(r1, 0, 1);

if (!alphafunc(r0.w, alpharef)) discard;

if (texture2D(stipple, gl_FragCoord.xy / 32).x < 0.5) discard;

r0.w *= coverageMask; // popcount(gl_SampleMaskIn) / gl_NumSamples

r1.w *= coverageMask;

r0.xy = vec2(packHalf2x16(r0.xy), packHalf2x16(r0.zw));

r1.xy = vec2(packHalf2x16(r1.xy), packHalf2x16(r1.zw));

out0 = r0;

out1 = r1;
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FRAGMENT SHADER EPILOG

If GL_ALPHA_TO_ONE is enabled:

r0 = clamp(r0, 0, 1);

r1 = clamp(r1, 0, 1);

if (!alphafunc(r0.w, alpharef)) discard;

if (texture2D(stipple, gl_FragCoord.xy / 32).x < 0.5) discard;

r0.w *= coverageMask; // popcount(gl_SampleMaskIn) / gl_NumSamples

r1.w *= coverageMask;

r0.w = 1;

r0.xy = vec2(packHalf2x16(r0.xy), packHalf2x16(r0.zw));

r1.xy = vec2(packHalf2x16(r1.xy), packHalf2x16(r1.zw));

out0 = r0;

out1 = r1;
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FRAGMENT SHADER PROLOG

 Only contains two-side color selection

 Decreases performance if done always

 3 scenarios:

‒Two-side colors are enabled:

‒Select colors based on gl_FrontFacing

‒Store them into registers r0, r1

‒Two-side colors are disabled:

‒Just copy front colors into r0, r1

‒No color inputs => prolog is empty

 Application shader should read colors from r0, r1
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COMPILING PROLOGS/EPILOGS

 Still have to be compiled in draw calls

‒Can be slow

 Use an assembler instead of the compiler

‒Our LLVM backend has an assembler too
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VERTEX SHADER INPUTS

 R600 had fetch shader

 Removed since GCN

 Current implementation:

‒One buffer per input

‒ Instance divisor == 0: Fetch BaseVertex + VertexID

‒ Instance divisor != 0: Fetch StartInstance + (InstanceID / instance divisor)
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VERTEX SHADER PROLOG

 Emulate fetch shader with prolog section

‒Drawback: can’t move loads to hide latencies, register usage

 Instead, only calculate load addresses:

‒Prolog writes the addresses to r0,r1, …

‒Main shader section executes the loads
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VERTEX SHADER EPILOG?

 Radeon has 3 ways to write VS outputs:

‒For rasterizer

‒For geometry shader

‒For tessellation control shader

 Don’t use an epilog

 OpenGL sometimes knows which shader follows

 If not, compile all 3 variants with 3 threads in parallel

 Piglit only: Compile on demand in draw calls

 Vertex color clamping: use conditional assignment
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MESA STATE TRACKER

 Middle-end, translates shaders from GLSL IR into TGSI

 Does that in draw calls

 State dependencies for draw calls:

‒Center vs sample interpolation

‒Instead, select coordinates with conditional assignment

‒Vertex and fragment color clamping

‒GL rendering context

 Any dependencies should be dealt with in drivers

 Other drivers will benefit too

‒GLSL->TGSI always done at link time
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IF GAMES COMPILE TOO LATE

 Compiling at link time doesn’t help

 Use shader cache

 1 shader variant => shader cache in core Mesa

 If games compile early => don’t need it
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SKIP MESA OPTIMIZATIONS?

 Our LLVM backend can do most optimizations

‒No need to do them in Mesa

 Mesa/GLSL passes we do need:

‒Demoting inputs/outputs to local variables (dead code elimination?)

‒Function inlining

‒Breaking built-in input/output arrays into variables
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Questions?



THANK YOU
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