
SOLUTION TO SHADER
RECOMPILES IN RADEONSI

SEPTEMBER 2015



2 | SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 20152 |   SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 2015

PROBLEM

 Shaders are compiled in draw calls

‒Emulating certain features in shaders

 Drivers keep shaders in some intermediate representation

 And insert additional code based on the states

 While compiling, everything stops

 Number of state combinations is exponential



3 | SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 20153 |   SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 2015

EMULATED STATES

 Fragment shader:

‒Conversion to colorbuffer formats (RGBA32, RGBA FP16, …)

‒Alpha-test

‒Selecting between front and back colors

‒gl_FragColor

‒GL_ALPHA_TO_ONE

‒Polygon stippling

‒Line & polygon smoothing

‒Point smoothing

‒Fragment color clamping



4 | SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 20154 |   SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 2015

EMULATED STATES, CONT.

 Vertex shader:

‒Loading inputs from vertex buffers manually

‒Vertex color clamping



5 | SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 20155 |   SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 2015

IDEA

 Observation:

‒All states can be applied at the beginning or end of shaders

‒At link time, compile application shaders

‒At draw time, append any shader bytecode needed

 3 shader sections:

‒Prolog section

‒Main section (application shader)

‒Epilog section

 Concatenate them



6 | SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 20156 |   SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 2015

FRAGMENT SHADER EPILOG

Color outputs are expected in r0, r1, …

out0 = r0;

out1 = r1;



7 | SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 20157 |   SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 2015

FRAGMENT SHADER EPILOG

If we need alpha-test:

if (!alphafunc(r0.w, alpharef)) discard;

out0 = r0;

out1 = r1;



8 | SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 20158 |   SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 2015

FRAGMENT SHADER EPILOG

If we need color clamping:

r0 = clamp(r0, 0, 1);

r1 = clamp(r1, 0, 1);

if (!alphafunc(r0.w, alpharef)) discard;

out0 = r0;

out1 = r1;



9 | SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 20159 |   SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 2015

FRAGMENT SHADER EPILOG

If we need polygon stippling:

r0 = clamp(r0, 0, 1);

r1 = clamp(r1, 0, 1);

if (!alphafunc(r0.w, alpharef)) discard;

if (texture2D(stipple, gl_FragCoord.xy / 32).x < 0.5) discard;

out0 = r0;

out1 = r1;



10 | SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 201510 |   SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 2015

FRAGMENT SHADER EPILOG

If we need smoothing:

r0 = clamp(r0, 0, 1);

r1 = clamp(r1, 0, 1);

if (!alphafunc(r0.w, alpharef)) discard;

if (texture2D(stipple, gl_FragCoord.xy / 32).x < 0.5) discard;

r0.w *= coverageMask; // popcount(gl_SampleMaskIn) / gl_NumSamples

r1.w *= coverageMask;

out0 = r0;

out1 = r1;



11 | SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 201511 |   SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 2015

FRAGMENT SHADER EPILOG

If color conversion is required:

r0 = clamp(r0, 0, 1);

r1 = clamp(r1, 0, 1);

if (!alphafunc(r0.w, alpharef)) discard;

if (texture2D(stipple, gl_FragCoord.xy / 32).x < 0.5) discard;

r0.w *= coverageMask; // popcount(gl_SampleMaskIn) / gl_NumSamples

r1.w *= coverageMask;

r0.xy = vec2(packHalf2x16(r0.xy), packHalf2x16(r0.zw));

r1.xy = vec2(packHalf2x16(r1.xy), packHalf2x16(r1.zw));

out0 = r0;

out1 = r1;



12 | SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 201512 |   SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 2015

FRAGMENT SHADER EPILOG

If GL_ALPHA_TO_ONE is enabled:

r0 = clamp(r0, 0, 1);

r1 = clamp(r1, 0, 1);

if (!alphafunc(r0.w, alpharef)) discard;

if (texture2D(stipple, gl_FragCoord.xy / 32).x < 0.5) discard;

r0.w *= coverageMask; // popcount(gl_SampleMaskIn) / gl_NumSamples

r1.w *= coverageMask;

r0.w = 1;

r0.xy = vec2(packHalf2x16(r0.xy), packHalf2x16(r0.zw));

r1.xy = vec2(packHalf2x16(r1.xy), packHalf2x16(r1.zw));

out0 = r0;

out1 = r1;



13 | SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 201513 |   SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 2015

FRAGMENT SHADER PROLOG

 Only contains two-side color selection

 Decreases performance if done always

 3 scenarios:

‒Two-side colors are enabled:

‒Select colors based on gl_FrontFacing

‒Store them into registers r0, r1

‒Two-side colors are disabled:

‒Just copy front colors into r0, r1

‒No color inputs => prolog is empty

 Application shader should read colors from r0, r1



14 | SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 201514 |   SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 2015

COMPILING PROLOGS/EPILOGS

 Still have to be compiled in draw calls

‒Can be slow

 Use an assembler instead of the compiler

‒Our LLVM backend has an assembler too



15 | SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 201515 |   SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 2015

VERTEX SHADER INPUTS

 R600 had fetch shader

 Removed since GCN

 Current implementation:

‒One buffer per input

‒ Instance divisor == 0: Fetch BaseVertex + VertexID

‒ Instance divisor != 0: Fetch StartInstance + (InstanceID / instance divisor)



16 | SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 201516 |   SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 2015

VERTEX SHADER PROLOG

 Emulate fetch shader with prolog section

‒Drawback: can’t move loads to hide latencies, register usage

 Instead, only calculate load addresses:

‒Prolog writes the addresses to r0,r1, …

‒Main shader section executes the loads



17 | SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 201517 |   SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 2015

VERTEX SHADER EPILOG?

 Radeon has 3 ways to write VS outputs:

‒For rasterizer

‒For geometry shader

‒For tessellation control shader

 Don’t use an epilog

 OpenGL sometimes knows which shader follows

 If not, compile all 3 variants with 3 threads in parallel

 Piglit only: Compile on demand in draw calls

 Vertex color clamping: use conditional assignment



18 | SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 201518 |   SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 2015

MESA STATE TRACKER

 Middle-end, translates shaders from GLSL IR into TGSI

 Does that in draw calls

 State dependencies for draw calls:

‒Center vs sample interpolation

‒Instead, select coordinates with conditional assignment

‒Vertex and fragment color clamping

‒GL rendering context

 Any dependencies should be dealt with in drivers

 Other drivers will benefit too

‒GLSL->TGSI always done at link time



19 | SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 201519 |   SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 2015

IF GAMES COMPILE TOO LATE

 Compiling at link time doesn’t help

 Use shader cache

 1 shader variant => shader cache in core Mesa

 If games compile early => don’t need it



20 | SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 201520 |   SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 2015

SKIP MESA OPTIMIZATIONS?

 Our LLVM backend can do most optimizations

‒No need to do them in Mesa

 Mesa/GLSL passes we do need:

‒Demoting inputs/outputs to local variables (dead code elimination?)

‒Function inlining

‒Breaking built-in input/output arrays into variables



21 | SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 201521 |   SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 2015

Questions?



THANK YOU



23 | SOLUTION TO SHADER RECOMPILES IN RADEONSI |   SEPTEMBER 17, 2015

DISCLAIMER & ATTRIBUTION

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard version changes, new model and/or product 
releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the 
right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL 
DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2015 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational 
purposes only and may be trademarks of their respective owners.




