IIIII

EEEEEEEEEEEEEEEE

Atomic Modesetting for Drivers

Daniel Vetter, Intel OTC



Anatomy of an Atomic Modeset

1. Build up new state
2. Compute derived state and check the update

3. Commit the new state to the hardware, possibly
asynchronously

2




State Building

* per-object states structures tracked in struct
drm atomic_state

* ->atomic duplicate/destroy * per-object

* —>atomic_ set/get property only for private
properties

* start with pure helpers, subclass as needed

3




State Checking

* global ->atomic_check entry point
* plus big modular helper library

* helper supports legacy ->mode fixup and new
->atomic check hooks

* read the kerneldoc!

4




State Precomputing&Checking

* often check and commit need to compute the same values,
e.g. DP link settings

> subclass state structures and store derived state for reuse
In the commit phase

* almosts everything ends up being subclassed, tons of
examples

5




Cross-State Structures Checking

* ->atomic_check hooks can look at any other state

* always use provided functions and check errors to avoid
wait/wound mutex headaches and unecessary serialization

* CONFIG DEBUG WW MUTEX SLOWPATH
* overwrite global ->atomic check if needed

* tons of examples already

6



Handling Global State

e for shared resources across CRTCs

* use driver-private w/w mutex or dev->mode config-

>connection_mutex

* ->atomic state alloc/clear/free to subclass
global struct drm atomic state

* currently only 1915: display core clock, shared PLLs, ...

7




State Committing

global ->atomic_commit entry point
commit not allowed to fail due to invalid state
core guarantees to call ->atomic check first

helpers by default optimized for backwards compat

modular helpers to accomodate more drivers, read docs!




Helper Design

* plane updates orthogonal to modeset changes

* no parital enables/disable, reducing complexity

* DPMS implemented entirely in helpers

* |ots of old hooks depracated, most others optional
* legacy state updated by default, but can be ignored

> much fewer bolilerplate required

9



Atomic Commit Flow

* —>prepare_fb for memory alloc, pinning

* swap new state into objects (must be done synchronously)
* wait for fences and buffers

* actual hardware commit, built from helpers and driver code
* wait for vblank

* ->cleanup_fb to for memory release, unpin

10




Hardware Commit Helpers

* CRTC, encoders and bridges for modesets with just
enable/disable hooks

* 3-phase plane updates:

1. CRTC ->atomic_begin for vblank evade, blocking
updates

2. per-plane ->atomic_update/disable
3.CRTC ->atomic flush to set GO bit, unblock updates

11




Bootstrapping Atomic State

* atomic updates always incremental
* assume that software state perfectly matches hardware

* driver load and resume need to ensure matching state, use
->reset hooks

* need not actually reset, hardware state readout for fastboot
also possible

12




Legacy Entry Points

* helpers to implement them with atomic for all of them

* allows drivers to keep old features that don't make sense to
port to atomic around

13




Ongoing for 4.4

* suspend/resume helpers
* atomic fbdev
* active only plane update helpers

* better support for runtime PM in general

14




Future Work

* generic async commit
* state readout for fastboot a la 1915
* more helpers as use-cases crop up ...

* generic validation tests in i-g-t perhaps

15




KMS Extensions

* easy to do with properties
* color manager, plane blending, ...

* should put them into core drm state structures to avoid
property proliferation

* same rules as any other kernel ABI

16




Android Support?

* just fences missing, but:

* hardware composer wants per-buffer relase fence, even
before the next flip is scheduled

> trivial fencing deadlock

* ... and no one has an open-source atomic hwc

17




Documentation

e conversion HOWTO for legacy drivers:
http://blog.ffwll.ch/2014/11/atomic-modeset-support-for-kms-drivers.htmil

e [WN design overview: https://lwn.net/Articles/653071/
https://lwn.net/Articles/653466/

e DRM DocBook: https://01.org/linuxgraphics/gfx-docs/drm/

18


http://blog.ffwll.ch/2014/11/atomic-modeset-support-for-kms-drivers.html
https://lwn.net/Articles/653071/
https://lwn.net/Articles/653466/
https://01.org/linuxgraphics/gfx-docs/drm/

Q&A

(@D OpenSource

Software TECHNOLOGY CENTER



	Being an Open-Source Maintainer
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Requirements for the Maintainer Role
	Q & A

