
1

Atomic Modesetting for Drivers

Daniel Vetter, Intel OTC

2

Anatomy of an Atomic Modeset

1. Build up new state

2. Compute derived state and check the update

3. Commit the new state to the hardware, possibly
asynchronously

3

State Building
● per-object states structures tracked in struct
drm_atomic_state

● ­>atomic_duplicate/destroy_* per-object

● ­>atomic_set/get_property only for private
properties

● start with pure helpers, subclass as needed

4

State Checking
● global ­>atomic_check entry point

● plus big modular helper library

● helper supports legacy ­>mode_fixup and new
­>atomic_check hooks

● read the kerneldoc!

5

State Precomputing&Checking
● often check and commit need to compute the same values,

e.g. DP link settings

➔ subclass state structures and store derived state for reuse
in the commit phase

● almosts everything ends up being subclassed, tons of
examples

6

Cross-State Structures Checking
● ­>atomic_check hooks can look at any other state

● always use provided functions and check errors to avoid
wait/wound mutex headaches and unecessary serialization

● CONFIG_DEBUG_WW_MUTEX_SLOWPATH

● overwrite global ­>atomic_check if needed

● tons of examples already

7

Handling Global State
● for shared resources across CRTCs

● use driver-private w/w mutex or dev­>mode_config­
>connection_mutex

● ­>atomic_state_alloc/clear/free to subclass
global struct drm_atomic_state

● currently only i915: display core clock, shared PLLs, ...

8

State Committing
● global ­>atomic_commit entry point

● commit not allowed to fail due to invalid state

● core guarantees to call ­>atomic_check first

● helpers by default optimized for backwards compat

● modular helpers to accomodate more drivers, read docs!

9

Helper Design
● plane updates orthogonal to modeset changes

● no parital enables/disable, reducing complexity

● DPMS implemented entirely in helpers

● lots of old hooks depracated, most others optional

● legacy state updated by default, but can be ignored

➔ much fewer boilerplate required

10

Atomic Commit Flow
● ­>prepare_fb for memory alloc, pinning

● swap new state into objects (must be done synchronously)

● wait for fences and buffers

● actual hardware commit, built from helpers and driver code

● wait for vblank

● ­>cleanup_fb to for memory release, unpin

11

Hardware Commit Helpers
● CRTC, encoders and bridges for modesets with just

enable/disable hooks

● 3-phase plane updates:

1. CRTC ­>atomic_begin for vblank evade, blocking
updates

2. per-plane ­>atomic_update/disable

3.CRTC ­>atomic_flush to set GO bit, unblock updates

12

Bootstrapping Atomic State
● atomic updates always incremental

● assume that software state perfectly matches hardware

● driver load and resume need to ensure matching state, use
­>reset hooks

● need not actually reset, hardware state readout for fastboot
also possible

13

Legacy Entry Points
● helpers to implement them with atomic for all of them

● allows drivers to keep old features that don't make sense to
port to atomic around

14

Ongoing for 4.4
● suspend/resume helpers

● atomic fbdev

● active_only plane update helpers

● better support for runtime PM in general

15

Future Work
● generic async commit

● state readout for fastboot à la i915

● more helpers as use-cases crop up …

● generic validation tests in i-g-t perhaps

16

KMS Extensions
● easy to do with properties

● color manager, plane blending, ...

● should put them into core drm state structures to avoid
property proliferation

● same rules as any other kernel ABI

17

Android Support?
● just fences missing, but:

● hardware composer wants per-buffer relase fence, even
before the next flip is scheduled

➔ trivial fencing deadlock

● … and no one has an open-source atomic hwc

18

Documentation

● conversion HOWTO for legacy drivers:
http://blog.ffwll.ch/2014/11/atomic-modeset-support-for-kms-drivers.html

● LWN design overview: https://lwn.net/Articles/653071/
https://lwn.net/Articles/653466/

● DRM DocBook: https://01.org/linuxgraphics/gfx-docs/drm/

http://blog.ffwll.ch/2014/11/atomic-modeset-support-for-kms-drivers.html
https://lwn.net/Articles/653071/
https://lwn.net/Articles/653466/
https://01.org/linuxgraphics/gfx-docs/drm/

19

Q & A

	Being an Open-Source Maintainer
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Requirements for the Maintainer Role
	Q & A

