
1

XDC 2016

PRIME Synchronization

Alex Goins, Andy Ritger

2

PRIME Output Slaving: Synchronization

Enables the sequence:

• One GPU renders and transfer pixels through GEM shared buffers.

• Another GPU displays the results.

Useful for a variety of cases:

• Optimus laptops:

• Integrated GPU (iGPU) connected to display, discrete GPU (dGPU) is not.

• USB DisplayLink adapters.

• Desktop motherboards with 'iGPU Multi-Monitor'.

Introduction: PRIME Output Slaving

3

PRIME Output Slaving: Synchronization

"output slave":

• The GPU which drives the display.

• Receives pixels from the "master" GPU.

• "sink"

• For this discussion, typically an Intel integrated GPU.

"output master":

• The GPU which does the rendering.

• Delivers pixels to the "slave" GPU.

• "source"

• For this discussion, typically an NVIDIA discrete GPU.

PRIME Output Slaving Terminology

4

PRIME Output Slaving: Synchronization

Until recently, PRIME output slaving was unsynchronized and single-buffered:

• RandR handshake between output master and output slave:

• Share a single screen-sized GEM buffer.

• Output master writes to buffer whenever.

• Typically every damage event, or maybe batched.

• Output slave reads from the buffer whenever.

• Typically at the refresh rate of the monitor.

• This results in tearing.

Problem Statement

5

PRIME Output Slaving: Synchronization

• Add ScreenRec::PresentSharedPixmap().

• Instead of master updating shared buffer when it wants:

• Output slave calls master's PresentSharedPixmap() after the previous frame has
been displayed.

• Typically after vblank notification.

• Output master's PresentSharedPixmap() updates the shared buffer.

Better, but still inherently racy.

Step #1: Explicit Buffer Updates

6

PRIME Output Slaving: Synchronization

• X server RandR code creates two shared GEM buffers.

• Add rrScrPrivRec::rrEnableSharedPixmapFlipping().

• X server RandR code calls output slave's rrEnableSharedPixmapFlipping().

• Instead of rrScrPrivRec::rrCrtcSetScanoutPixmap().

• Output slave alternates between these buffers

• Call output master's PresentSharedPixmap() for each buffer on alternating frames.

Step #2: Double Buffering

7

PRIME Output Slaving: Synchronization

• The sequence described so far requires an event every vblank.

• Wasteful if nothing is changing.

• Add ScreenRec::RequestSharedPixmapNotifyDamage().

• Add ScreenRec::SharedPixmapNotifyDamage().

• Slave calls master's RequestSharedPixmapNotifyDamage().

• Master calls slave's SharedPixmapNotifyDamage() when there is damage.

• Optional: if master does not provide RequestSharedPixmapNotifyDamage(), slave
can fall back to vblank events.

Step #3: When Idle, Wait for Damage, not VBlank

8

PRIME Output Slaving: Synchronization

(a) X server allocates 2 PRIME GEM buffers.

(b) X server calls master's SharePixmapBacking() => exports PRIME GEM buffers for slave.

(c) X server calls slave's rrEnableSharedPixmapFlipping() => gives slave chance for bookkeeping.

(d) X server calls master's rrStartFlippingPixmapTracking() => gives master chance for bookkeeping.

(e) X server calls master's PresentSharedPixmap() => populates front buffer.

(f) X server calls slave to perform modeset, which will display the front pixmap registered in (c); request vblank event.

Control Flow Diagram (page 1 of 2)

Output

master

Output

slave

X server

(a)

(b)

(c)

(d)

(e) (f)

9

PRIME Output Slaving: Synchronization

(g) Slave's vblank handler triggers; slave calls master's PresentSharedPixmap().

(h) If master has new content, update new buffer and return TRUE:

 (h.1) This causes slave to flip to new buffer, requesting vblank event; goto (g).

(i) Else, master does not have new content, return FALSE:

 (i.1) If master does not provide RequestSharedPixmapNotifyDamage(), schedule vblank event; goto (g).

 (i.2) Else, master provides RequestSharedPixmapNotifyDamage(), call it.

 (i.3) When master receives damage, master calls slave's SharedPixmapNotifyDamage(); goto (g).

Control Flow Diagram (page 2 of 2)

Output

master

Output

slave

X server

(g)

(h)(i)

(h.1) (i.2)

(i.1) (i.3)

10

PRIME Output Slaving: Synchronization

• Output master's PresentSharedPixmap():

• Kick off work on the GPU, to write to shared buffer.

• Doesn't necessarily wait for GPU work to complete.

• Output slave's subsequent flip could race ahead of master's GPU work.

• Results in output slave displaying two-frame-old content.

Step #4: Output Slave Fenced Flipping

11

PRIME Output Slaving: Synchronization
Step #4: Output Slave Fenced Flipping (continued)

slave

master (cpu)

master (gpu)

time

Display buffer A Display buffer B Display buffer A Display buffer B

Render Frame N+1

to buffer B

Render Frame N+2

to buffer A

Render Frame N+3

to buffer B

Frame N Frame N+1 Frame N+2 Frame N+1

Buffer B will not contain Frame

N+3 content until the master (gpu)

work completes.

12

PRIME Output Slaving: Synchronization

• Use fence to block flip until until master's work completes.

• Master attaches fence before updating buffer, then signals fence after GPU
completes.

• i915 kernel driver updated to honor fences when flipping (Linux 4.5).

Step #4: Output Slave Fenced Flipping (continued)

13

PRIME Output Slaving: Synchronization

• Master-rendered synced-to-VBlank OpenGL, needs to throttle to slave's vblank.

• In NVIDIA's PresentSharedPixmap() implementation:

• Copying from X screen to GEM object is treated as virtual vblank by OpenGL.

• Very implementation-dependent, but good for other output masters to be aware of.

• X server passes RRCrtcPtr to master's StartFlippingPixmapTracking():

• This lets OpenGL correlate an RandR output name with the PRIME output slaving.

• E.g., `__GL_SYNC_DISPLAY_DEVICE=HDMI-0 glxgears` behaves as expected (where
“HDMI-0” is a slave output).

OpenGL Syncing To VBlank

14

PRIME Output Slaving: Synchronization

xf86-video-modesetting:

• Supports being a PRIME sync output slave.

• Supports being a PRIME sync output master.

nvidia X driver:

• Supports being a PRIME sync output master.

PRIME Synchronization enabled by default when X server and both drivers support it.

• Can be disabled by setting the "PRIME Synchronization" output property to 0.

Status

15

PRIME Output Slaving: Synchronization

• xf86-video-modesetting should work on any DRM KMS driver.

• But only really tested on i915, so far.

• Fenced flipping should be implemented in other DRM drivers.

• No way to detect in user-space if the kernel driver supports fenced flips.

• USB devices don’t provide reliable vblank events:

• xf86-video-modesetting blacklists usb devices from PRIME sync.

• Reverse PRIME would require more work:

• GPUs that cannot scan out from sysmem would require copying from GEM shared
buffer to shadow vidmem.

• Honor fence during sysmem to vidmem copy.

Conclusion and Future Work

16

PRIME Output Slaving: Synchronization

• Thank you to Alex Goins (agoins 'at' nvidia.com) for all the work on this.

• Contact Alex for questions.

• End-user focused documentation here:

• https://devtalk.nvidia.com/default/topic/957814/linux/prime-and-prime-
synchronization/

Thank You

