PRIME

XDC 2016

PRIME Output Slaving: Synchronization

Enables the sequence:
One GPU renders and transfer pixels through GEM shared buffers.
Another GPU displays the results.

Useful for a variety of cases:
Optimus laptops:
Integrated GPU (iGPU) connected to display, discrete GPU (dGPU) is not.
USB DisplayLink adapters.
Desktop motherboards with iGPU Multi-Monitor'.

2 NVIDIA.

PRIME Output Slaving: Synchronization

“output slave”:

The GPU which drives the display.

Receives pixels from the "master” GPU.

"sink”

For this discussion, typically an Intel integrated GPU.
“output master-:

The GPU which does the rendering.

Delivers pixels to the "slave” GPU.

“source”

For this discussion, typically an NVIDIA discrete GPU.

3 NVIDIA.

PRIME Output Slaving: Synchronization

Until recently, PRIME output slaving was unsynchronized and single-buffered:
RandR handshake between output master and output slave:
Share a single screen-sized GEM buffer.
Output master writes to buffer whenever.
Typically every damage event, or maybe batched.
Output slave reads from the buffer whenever.
Typically at the refresh rate of the monitor.
This results in tearing.

4 NVIDIA.

PRIME Output Slaving: Synchronization

Add ScreenRec::PresentSharedPixmap().
Instead of master updating shared buffer when it wants:

Output slave calls master's PresentSharedPixmap() after the previous frame has
been displayed.

Typically after vblank notification.
Output master's PresentSharedPixmap() updates the shared buffer.

Better, but still inherently racy.

5 NVIDIA.

PRIME Output Slaving: Synchronization

X server RandR code creates two shared GEM buffers.

Add rrScrPrivRec::rrEnableSharedPixmapFlipping().
X server RandR code calls output slave's rrEnableSharedPixmapFlipping().
Instead of rrScrPrivRec::rrCrtcSetScanoutPixmap().

Output slave alternates between these buffers
Call output master’s PresentSharedPixmap() for each buffer on alternating frames.

6 NVIDIA.

PRIME Output Slaving: Synchronization

The sequence described so far requires an event every vblank.
Wasteful if nothing is changing.

Add ScreenRec::RequestSharedPixmapNotifyDamage().

Add ScreenRec::SharedPixmapNotifyDamage().

Slave calls master's RequestSharedPixmapNotifyDamage().
Master calls slave's SharedPixmapNotifyDamage() when there is damage.

Optional: if master does not provide RequestSharedPixmapNotifyDamage(), slave
can fall back to vblank events.

7 NVIDIA.

PRIME Output Slaving: Synchronization

Control Flow Diagram (page 1 of 2)

<4—

Output
master

(a) X server allocates 2 PRIME GEM buffers.

(b) X server calls master's SharePixmapBacking() => exports PRIME GEM buffers for slave.

(c) X server calls slave's rrEnableSharedPixmapFlipping() => gives slave chance for bookkeeping.

(d) X server calls master's rrStartFlippingPixmapTracking() => gives master chance for bookkeeping.
(e) X server calls master's PresentSharedPixmap() => populates front buffer.

(f) X server calls slave to perform modeset, which will display the front pixmap registered in (c); request vblank event.

8 <ANVIDIA.

PRIME Output Slaving: Synchronization

Control Flow Diagram (page 2 of 2)

(9)

Output (i.2) (h.1)

(M) master

(i.1)

Ut

(g) Slave's vblank handler triggers; slave calls master's PresentSharedPixmap().

(h) If master has new content, update new buffer and return TRUE:
(h.1) This causes slave to flip to new buffer, requesting vblank event; goto (g).

(i) Else, master does not have new content, return FALSE:
(i.1) If master does not provide RequestSharedPixmapNotifyDamage(), schedule vblank event; goto (g).
(i.2) Else, master provides RequestSharedPixmapNotifyDamage(), call it.

(i.3) When master receives damage, master calls slave's SharedPixmapNotifyDamage(); goto (g).

9 <NVIDIA.

PRIME Output Slaving: Synchronization

Output master's PresentSharedPixmap():
Kick off work on the GPU, to write to shared buffer.
Doesn't necessarily wait for GPU work to complete.

Output slave's subsequent flip could race ahead of master's GPU work.

Results in output slave displaying two-frame-old content.

10

NVIDIA.

PRIME Output Slaving: Synchronization

Step #4. Output Slave Fenced Flipping (continued)

Buffer B will not contain Frame
N+3 content until the master (gpu)

work completes.
Frame N Frame N+1 Frame N+2

P slave

Display buffer A Display buffer B Display buffer A Display buffer B
|]]] |
— — f =

S S Y S

» master (cpu)

Render Frame N+3
to buffer B

Render Frame N+2
to buffer A

Render Frame N+1
to buffer B

» master (gpu)

time ——»

11 <INVIDIA.

PRIME Output Slaving: Synchronization

Use fence to block flip until until master's work completes.

Master attaches fence before updating buffer, then signals fence after GPU
completes.

1915 kernel driver updated to honor fences when flipping (Linux 4.5).

12 NVIDIA.

PRIME Output Slaving: Synchronization

Master-rendered synced-to-VBlank OpenGL, needs to throttle to slave's vblank.

In NVIDIA's PresentSharedPixmap() implementation:
Copying from X screen to GEM object is treated as virtual vblank by OpenGL.

Very implementation-dependent, but good for other output masters to be aware of.

X server passes RRCrtcPtr to master's StartFlippingPixmapTracking():

This lets OpenGL correlate an RandR output name with the PRIME output slaving.

E.g., __ GL_SYNC_DISPLAY_DEVICE=HDMI-0 glxgears behaves as expected (where
“HDMI-0” is a slave output).

13

NVIDIA.

PRIME Output Slaving: Synchronization

xf86-video-modesetting:
Supports being a PRIME sync output slave.
Supports being a PRIME sync output master.

nvidia X driver:
Supports being a PRIME sync output master.

PRIME Synchronization enabled by default when X server and both drivers support it.
Can be disabled by setting the "PRIME Synchronization” output property to 0.

14 NVIDIA.

PRIME Output Slaving: Synchronization

xf86-video-modesetting should work on any DRM KMS driver.
But only really tested on 1915, so far.
Fenced flipping should be implemented in other DRM drivers.
No way to detect in user-space if the kernel driver supports fenced flips.
USB devices don’t provide reliable vblank events:
xf86-video-modesetting blacklists usb devices from PRIME sync.
Reverse PRIME would require more work:

GPUs that cannot scan out from sysmem would require copying from GEM shared
buffer to shadow vidmem.

Honor fence during sysmem to vidmem copy.

15 NVIDIA.

PRIME Output Slaving: Synchronization

Thank you to Alex Goins (agoins ‘at’ nvidia.com) for all the work on this.
Contact Alex for questions.

End-user focused documentation here:

https://devtalk.nvidia.com/default/topic/957814/linux/prime-and-prime-
synchronization/

16 NVIDIA.

